Serum Neurofilament Light is elevated in COVID-19 Positive Adults in the ICU and is associated with Co-Morbid Cardiovascular Disease, Neurological Complications, and Acuity of Illness.

Hay M, Ryan L, Huentelman M, Konhilas J, Hoyer-Kimura C, Beach TG, Serrano GE, Reiman EM, Blennow K, Zetterberg H, Parthasarathy S

Cardiol Cardiovasc Med 5 (5) 551-565 [2021-10-00; online 2021-10-13]

In critically ill COVID-19 patients, the risk of long-term neurological consequences is just beginning to be appreciated. While recent studies have identified that there is an increase in structural injury to the nervous system in critically ill COVID-19 patients, there is little known about the relationship of COVID-19 neurological damage to the systemic inflammatory diseases also observed in COVID-19 patients. The purpose of this pilot observational study was to examine the relationships between serum neurofilament light protein (NfL, a measure of neuronal injury) and co-morbid cardiovascular disease (CVD) and neurological complications in COVID-19 positive patients admitted to the intensive care unit (ICU). In this observational study of one-hundred patients who were admitted to the ICU in Tucson, Arizona between April and August 2020, 89 were positive for COVID-19 (COVID-pos) and 11 was COVID-negative (COVID-neg). A healthy control group (n=8) was examined for comparison. The primary outcomes and measures were subject demographics, serum NfL, presence and extent of CVD, diabetes, sequential organ failure assessment score (SOFA), presence of neurological complications, and blood chemistry panel data. COVID-pos patients in the ICU had significantly higher mean levels of Nfl (229.6 ± 163 pg/ml) compared to COVID-neg ICU patients (19.3 ± 5.6 pg/ml), Welch's t-test, p =.01 and healthy controls (12.3 ± 3.1 pg/ml), Welch's t-test p =.005. Levels of Nfl in COVID-pos ICU patients were significantly higher in patients with concomitant CVD and diabetes (n=35, log Nfl 1.6±.09), and correlated with higher SOFA scores (r=.5, p =.001). These findings suggest that in severe COVID-19 disease, the central neuronal and axonal damage in these patients may be driven, in part, by the level of systemic cardiovascular disease and peripheral inflammation. Understanding the contributions of systemic inflammatory disease to central neurological degeneration in these COVID-19 survivors will be important to the design of interventional therapies to prevent long-term neurological and cognitive dysfunction.

Category: Biochemistry

Category: Health

Type: Journal article

PubMed 34708189

DOI 10.26502/fccm.92920221

Crossref 10.26502/fccm.92920221

mid: NIHMS1747952
pmc: PMC8547787

Publications 9.5.0