Light-Induced Transformation of Virus-Like Particles on TiO2.

Kohantorabi M, Ugolotti A, Sochor B, Roessler J, Wagstaffe M, Meinhardt A, Beck EE, Dolling DS, Garcia MB, Creutzburg M, Keller TF, Schwartzkopf M, Vayalil SK, Thuenauer R, Guédez G, Löw C, Ebert G, Protzer U, Hammerschmidt W, Zeidler R, Roth SV, Di Valentin C, Stierle A, Noei H

ACS Appl Mater Interfaces 16 (28) 37275-37287 [2024-07-17; online 2024-07-03]

Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.

Category: Rehabilitation

Type: Journal article

PubMed 38959130

DOI 10.1021/acsami.4c07151

Crossref 10.1021/acsami.4c07151

pmc: PMC11261565


Publications 9.5.1