Clinically observed deletions in SARS-CoV-2 Nsp1 affect its stability and ability to inhibit translation.

Kumar P, Schexnaydre E, Rafie K, Kurata T, Terenin I, Hauryliuk V, Carlson LA

FEBS Lett 596 (9) 1203-1213 [2022-05-00; online 2022-04-25]

Nonstructural protein 1 (Nsp1) of SARS-CoV-2 inhibits host cell translation through an interaction between its C-terminal domain and the 40S ribosome. The N-terminal domain (NTD) of Nsp1 is a target of recurring deletions, some of which are associated with altered COVID-19 disease progression. Here, we characterize the efficiency of translational inhibition by clinically observed Nsp1 deletion variants. We show that a frequent deletion of residues 79-89 severely reduces the ability of Nsp1 to inhibit translation while not abrogating Nsp1 binding to the 40S. Notably, while the SARS-CoV-2 5' untranslated region enhances translation of mRNA, it does not protect from Nsp1-mediated inhibition. Finally, thermal stability measurements and structure predictions reveal a correlation between stability of the NTD and the efficiency of translation inhibition.

Category: Biochemistry

Category: Health

Funder: VR

Type: Journal article

PubMed 35434785

DOI 10.1002/1873-3468.14354

Crossref 10.1002/1873-3468.14354

pmc: PMC9081967

Publications 9.5.0