Larsson AO, Hultström M, Frithiof R, Lipcsey M, Nyman U, Eriksson MB
Acta Anaesthesiol Scand 67 (2) 213-220 [2023-02-00; online 2022-11-26]
Estimations of glomerular filtration rate (eGFR) are based on analyses of creatinine and cystatin C, respectively. Coronavirus disease 2019 (COVID-19) patients in the intensive care unit (ICU) often have acute kidney injury (AKI) and are at increased risk of drug-induced kidney injury. The aim of this study was to compare creatinine-based eGFR equations to cystatin C-based eGFR in ICU patients with COVID-19. After informed consent, we included 370 adult ICU patients with COVID-19. Creatinine and cystatin C were analyzed at admission to the ICU as part of the routine care. Creatinine-based eGFR (ml/min) was calculated using the following equations, developed in chronological order; the Cockcroft-Gault (C-G), Modified Diet in Renal Disease (MDRD)1999, MDRD 2006, Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), and Lund-Malmö revised (LMR) equations, which were compared with eGFR calculated using the cystatin C-based Caucasian Asian Pediatric Adult (CAPA) equation. The median eGFR when determined by C-G was 99 ml/min and interquartile range (IQR: 67 ml/min). Corresponding estimations for MDRD1999 were 90 ml/min (IQR: 54); MDRD2006: 85 ml/min (IQR: 51); CKD-EPI: 91 ml/min (IQR: 47); and for LMR 83 ml/min (IQR: 41). eGFR was calculated using cystatin C and the CAPA equation value was 70 ml/min (IQR: 38). All differences between creatinine-based eGFR versus cystatin C-based eGFR were significant (p < .00001). Estimation of GFR based on various analyses of creatinine are higher when compared with a cystatin C-based equation. The C-G equation had the worst performance and should not be used in combination with modern creatinine analysis methods for determination of drug dosage in COVID-19 patients.
Funder: KAW/SciLifeLab National COVID program
PubMed 36400740
DOI 10.1111/aas.14173
Crossref 10.1111/aas.14173