Soluble angiotensin-converting enzyme 2 is transiently elevated in COVID-19 and correlates with specific inflammatory and endothelial markers.

Lundström A, Ziegler L, Havervall S, Rudberg AS, von Meijenfeldt F, Lisman T, Mackman N, Sandén P, Thålin C

J Med Virol 93 (10) 5908-5916 [2021-10-00; online 2021-07-06]

The main entry receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is angiotensin-converting enzyme 2 (ACE2). SARS-CoV-2 interactions with ACE2 may increase ectodomain shedding but consequences for the renin-angiotensin system and pathology in Coronavirus disease 2019 (COVID-19) remain unclear. We measured soluble ACE2 (sACE2) and sACE levels by enzyme-linked immunosorbent assay in 114 hospital-treated COVID-19 patients compared with 10 healthy controls; follow-up samples after four months were analyzed for 58 patients. Associations between sACE2 respectively sACE and risk factors for severe COVID-19, outcome, and inflammatory markers were investigated. Levels of sACE2 were higher in COVID-19 patients than in healthy controls, median 5.0 (interquartile range 2.8-11.8) ng/ml versus 1.4 (1.1-1.6) ng/ml, p < .0001. sACE2 was higher in men than women but was not affected by other risk factors for severe COVID-19. sACE2 decreased to 2.3 (1.6-3.9) ng/ml at follow-up, p < .0001, but remained higher than in healthy controls, p = .012. sACE was marginally lower during COVID-19 compared with at follow-up, 57 (45-70) ng/ml versus 72 (52-87) ng/ml, p = .008. Levels of sACE2 and sACE did not differ depending on survival or disease severity. sACE2 during COVID-19 correlated with von Willebrand factor, factor VIII and D-dimer, while sACE correlated with interleukin 6, tumor necrosis factor α, and plasminogen activator inhibitor 1. Conclusions: sACE2 was transiently elevated in COVID-19, likely due to increased shedding from infected cells. sACE2 and sACE during COVID-19 differed in correlations with markers of inflammation and endothelial dysfunction, suggesting release from different cell types and/or vascular beds.

Category: Biochemistry

Category: Health

Funder: KAW/SciLifeLab

Funder: VR

Research Area: Biobanks for COVID-19 research

Type: Journal article

PubMed 34138483

DOI 10.1002/jmv.27144

Crossref 10.1002/jmv.27144

pmc: PMC8426677


Publications 7.1.2