Shanmugam V, Babu K, Garrison TF, Capezza AJ, Olsson RT, Ramakrishna S, Hedenqvist MS, Singha S, Bartoli M, Giorcelli M, Sas G, Försth M, Das O, Restás Á, Berto F
J Appl Polym Sci 138 (27) 50658 [2021-07-15; online 2021-03-09]
The global coronavirus disease 2019 (COVID-19) pandemic has rapidly increased the demand for facemasks as a measure to reduce the rapid spread of the pathogen. Throughout the pandemic, some countries such as Italy had a monthly demand of ca. 90 million facemasks. Domestic mask manufacturers are capable of manufacturing 8 million masks each week, although the demand was 40 million per week during March 2020. This dramatic increase has contributed to a spike in the generation of facemask waste. Facemasks are often manufactured with synthetic materials that are non-biodegradable, and their increased usage and improper disposal are raising environmental concerns. Consequently, there is a strong interest for developing biodegradable facemasks made with for example, renewable nanofibres. A range of natural polymer-based nanofibres has been studied for their potential to be used in air filter applications. This review article examines potential natural polymer-based nanofibres along with their filtration and antimicrobial capabilities for developing biodegradable facemask that will promote a cleaner production.
PubMed 34149062
DOI 10.1002/app.50658
Crossref 10.1002/app.50658
pii: APP50658
pmc: PMC8206777