Fonseca-RodrÃguez O, Gustafsson PE, San Sebastián M, Connolly AF
BMJ Glob Health 6 (7) - [2021-07-00; online 2021-07-30]
In Sweden, thousands of hospitalisations and deaths due to COVID-19 were reported since the pandemic started. Considering the uneven spatial distribution of those severe outcomes at the municipality level, the objective of this study was, first, to identify high-risk areas for COVID-19 hospitalisations and deaths, and second, to determine the associated contextual factors with the uneven spatial distribution of both study outcomes in Sweden. The existences of spatial autocorrelation of the standardised incidence (hospitalisations) ratio and standardised mortality ratio were investigated using Global Moran's I test. Furthermore, we applied the retrospective Poisson spatial scan statistics to identify high-risk spatial clusters. The association between the contextual demographic and socioeconomic factors and the number of hospitalisations and deaths was estimated using a quasi-Poisson generalised additive regression model. Ten high-risk spatial clusters of hospitalisations and six high-risk clusters of mortality were identified in Sweden from February 2020 to October 2020. The hospitalisations and deaths were associated with three contextual variables in a multivariate model: population density (inhabitants/km2) and the proportion of immigrants (%) showed a positive association with both outcomes, while the proportion of the population aged 65+ years (%) showed a negative association. Our study identified high-risk spatial clusters for hospitalisations and deaths due to COVID-19 and the association of population density, the proportion of immigrants and the proportion of people aged 65+ years with those severe outcomes. Results indicate where public health measures must be reinforced to improve sustained and future disease control and optimise the distribution of resources.
PubMed 34321234
DOI 10.1136/bmjgh-2021-006247
Crossref 10.1136/bmjgh-2021-006247
pii: bmjgh-2021-006247
pmc: PMC8322019