Decreased renal perfusion during acute kidney injury in critical COVID-19 assessed by magnetic resonance imaging: a prospective case control study.

Luther T, Eckerbom P, Cox E, Lipcsey M, Bülow S, Hultström M, Torrente FM, Weis J, Palm F, Francis S, Frithiof R, Liss P

Crit Care 26 (1) 262 [2022-09-01; online 2022-09-01]

Renal hypoperfusion has been suggested to contribute to the development of acute kidney injury (AKI) in critical COVID-19. However, limited data exist to support this. We aim to investigate the differences in renal perfusion, oxygenation and water diffusion using multiparametric magnetic resonance imaging in critically ill COVID-19 patients with and without AKI. A prospective case-control study where patients without prior kidney disease treated in intensive care for respiratory failure due to COVID-19 were examined. Kidney Disease: Improving Global Outcomes Creatinine criteria were used for group allocation. Main comparisons were tested using Mann-Whitney U test. Nineteen patients were examined, ten with AKI and nine without AKI. Patients with AKI were examined in median 1 [0-2] day after criteria fulfillment. Age and baseline Plasma-Creatinine were similar in both groups. Total renal blood flow was lower in patients with AKI compared with patients without (median 645 quartile range [423-753] vs. 859 [746-920] ml/min, p = 0.037). Regional perfusion was reduced in both cortex (76 [51-112] vs. 146 [123-169] ml/100 g/min, p = 0.015) and medulla (28 [18-47] vs. 47 [38-73] ml/100 g/min, p = 0.03). Renal venous saturation was similar in both groups (72% [64-75] vs. 72% [63-84], ns.), as was regional oxygenation (R2*) in cortex (17 [16-19] vs. 17 [16-18] 1/s, ns.) and medulla (29 [24-39] vs. 27 [23-29] 1/s, ns.). In critically ill COVID-19 patients with AKI, the total, cortical and medullary renal blood flows were reduced compared with similar patients without AKI, whereas no differences in renal oxygenation were demonstrable in this setting. Trial registration ClinicalTrials ID: NCT02765191 , registered May 6 2014 and updated May 7 2020.

Category: Biochemistry

Category: Health

Funder: KAW/SciLifeLab National COVID program

Funder: VR

Research Area: Biobanks for COVID-19 research

Type: Journal article

PubMed 36050748

DOI 10.1186/s13054-022-04132-8

Crossref 10.1186/s13054-022-04132-8

pii: 10.1186/s13054-022-04132-8
pmc: PMC9434518
ClinicalTrials.gov: NCT02765191


Publications 9.5.1