Cuapio A, Boulouis C, Filipovic I, Wullimann D, Kammann T, Parrot T, Chen P, Akber M, Gao Y, Hammer Q, Strunz B, Pérez Potti A, Rivera Ballesteros O, Lange J, Muvva JR, Bergman P, Blennow O, Hansson L, Mielke S, Nowak P, Söderdahl G, Österborg A, Smith CIE, Bogdanovic G, Muschiol S, Hellgren F, Loré K, Sobkowiak MJ, Gabarrini G, Healy K, Sällberg Chen M, Alici E, Björkström NK, Buggert M, Ljungman P, Sandberg JK, Aleman S, Ljunggren HG
Mol Med 28 (1) 20 [2022-02-08; online 2022-02-08]
Adaptive immune responses have been studied extensively in the course of mRNA vaccination against COVID-19. Considerably fewer studies have assessed the effects on innate immune cells. Here, we characterized NK cells in healthy individuals and immunocompromised patients in the course of an anti-SARS-CoV-2 BNT162b2 mRNA prospective, open-label clinical vaccine trial. See trial registration description in notes. Results revealed preserved NK cell numbers, frequencies, subsets, phenotypes, and function as assessed through consecutive peripheral blood samplings at 0, 10, 21, and 35 days following vaccination. A positive correlation was observed between the frequency of NKG2C+ NK cells at baseline (Day 0) and anti-SARS-CoV-2 Ab titers following BNT162b2 mRNA vaccination at Day 35. The present results provide basic insights in regards to NK cells in the context of mRNA vaccination, and have relevance for future mRNA-based vaccinations against COVID-19, other viral infections, and cancer.Trial registration: The current study is based on clinical material from the COVAXID open-label, non-randomized prospective clinical trial registered at EudraCT and clinicaltrials.gov (no. 2021-000175-37). Description: https://clinicaltrials.gov/ct2/show/NCT04780659?term=2021-000175-37&draw=2&rank=1 .
Funder: KAW/SciLifeLab National COVID program
PubMed 35135470
DOI 10.1186/s10020-022-00443-2
Crossref 10.1186/s10020-022-00443-2
pii: 10.1186/s10020-022-00443-2
ClinicalTrials.gov: NCT04780659