Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia.

Zhang Q, Matuozzo D, Le Pen J, Lee D, Moens L, Asano T, Bohlen J, Liu Z, Moncada-Velez M, Kendir-Demirkol Y, Jing H, Bizien L, Marchal A, Abolhassani H, Delafontaine S, Bucciol G, COVID Human Genetic Effort , Bayhan GI, Keles S, Kiykim A, Hancerli S, Haerynck F, Florkin B, Hatipoglu N, Ozcelik T, Morelle G, Zatz M, Ng LFP, Lye DC, Young BE, Leo YS, Dalgard CL, Lifton RP, Renia L, Meyts I, Jouanguy E, Hammarström L, Pan-Hammarström Q, Boisson B, Bastard P, Su HC, Boisson-Dupuis S, Abel L, Rice CM, Zhang SY, Cobat A, Casanova JL

J Exp Med 219 (8) - [2022-08-01; online 2022-06-16]

Recessive or dominant inborn errors of type I interferon (IFN) immunity can underlie critical COVID-19 pneumonia in unvaccinated adults. The risk of COVID-19 pneumonia in unvaccinated children, which is much lower than in unvaccinated adults, remains unexplained. In an international cohort of 112 children (<16 yr old) hospitalized for COVID-19 pneumonia, we report 12 children (10.7%) aged 1.5-13 yr with critical (7 children), severe (3), and moderate (2) pneumonia and 4 of the 15 known clinically recessive and biochemically complete inborn errors of type I IFN immunity: X-linked recessive TLR7 deficiency (7 children) and autosomal recessive IFNAR1 (1), STAT2 (1), or TYK2 (3) deficiencies. Fibroblasts deficient for IFNAR1, STAT2, or TYK2 are highly vulnerable to SARS-CoV-2. These 15 deficiencies were not found in 1,224 children and adults with benign SARS-CoV-2 infection without pneumonia (P = 1.2 × 10-11) and with overlapping age, sex, consanguinity, and ethnicity characteristics. Recessive complete deficiencies of type I IFN immunity may underlie ∼10% of hospitalizations for COVID-19 pneumonia in children.

Category: Biochemistry

Category: Health

Type: Journal article

PubMed 35708626

DOI 10.1084/jem.20220131

Crossref 10.1084/jem.20220131

pii: 213287
pmc: PMC9206114


Publications 9.5.0