Bigotti MG, Klein K, Gan ES, Anastasina M, Andersson S, Vapalahti O, Katajisto P, Erdmann M, Davidson AD, Butcher SJ, Collinson I, Ooi EE, Balistreri G, Brancaccio A, Yamauchi Y
Antiviral Res 224 (-) 105837 [2024-02-20; online 2024-02-20]
The COVID-19 pandemic has shown the need to develop effective therapeutics in preparedness for further epidemics of virus infections that pose a significant threat to human health. As a natural compound antiviral candidate, we focused on α-dystroglycan, a highly glycosylated basement membrane protein that links the extracellular matrix to the intracellular cytoskeleton. Here we show that the N-terminal fragment of α-dystroglycan (α-DGN), as produced in E. coli in the absence of post-translational modifications, blocks infection of SARS-CoV-2 in cell culture, human primary gut organoids and the lungs of transgenic mice expressing the human receptor angiotensin I-converting enzyme 2 (hACE2). Prophylactic and therapeutic administration of α-DGN reduced SARS-CoV-2 lung titres and protected the mice from respiratory symptoms and death. Recombinant α-DGN also blocked infection of a wide range of enveloped viruses including the four Dengue virus serotypes, influenza A virus, respiratory syncytial virus, tick-borne encephalitis virus, but not human adenovirus, a non-enveloped virus in vitro. This study establishes soluble recombinant α-DGN as a broad-band, natural compound candidate therapeutic against enveloped viruses.
PubMed 38387750
DOI 10.1016/j.antiviral.2024.105837
Crossref 10.1016/j.antiviral.2024.105837
pii: S0166-3542(24)00045-7