Computerization of the Work of General Practitioners: Mixed Methods Survey of Final-Year Medical Students in Ireland.

Blease C, Kharko A, Bernstein M, Bradley C, Houston M, Walsh I, D Mandl K

JMIR Med Educ 9 (-) e42639 [2023-03-20; online 2023-03-20]

The potential for digital health technologies, including machine learning (ML)-enabled tools, to disrupt the medical profession is the subject of ongoing debate within biomedical informatics. We aimed to describe the opinions of final-year medical students in Ireland regarding the potential of future technology to replace or work alongside general practitioners (GPs) in performing key tasks. Between March 2019 and April 2020, using a convenience sample, we conducted a mixed methods paper-based survey of final-year medical students. The survey was administered at 4 out of 7 medical schools in Ireland across each of the 4 provinces in the country. Quantitative data were analyzed using descriptive statistics and nonparametric tests. We used thematic content analysis to investigate free-text responses. In total, 43.1% (252/585) of the final-year students at 3 medical schools responded, and data collection at 1 medical school was terminated due to disruptions associated with the COVID-19 pandemic. With regard to forecasting the potential impact of artificial intelligence (AI)/ML on primary care 25 years from now, around half (127/246, 51.6%) of all surveyed students believed the work of GPs will change minimally or not at all. Notably, students who did not intend to enter primary care predicted that AI/ML will have a great impact on the work of GPs. We caution that without a firm curricular foundation on advances in AI/ML, students may rely on extreme perspectives involving self-preserving optimism biases that demote the impact of advances in technology on primary care on the one hand and technohype on the other. Ultimately, these biases may lead to negative consequences in health care. Improvements in medical education could help prepare tomorrow's doctors to optimize and lead the ethical and evidence-based implementation of AI/ML-enabled tools in medicine for enhancing the care of tomorrow's patients.

Category: Health

Type: Journal article

PubMed 36939809

DOI 10.2196/42639

Crossref 10.2196/42639

pii: v9i1e42639


Publications 9.5.1